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Institut fur Mathematische Physik, Technische Universitat Braunschweig, 
Mendelssohnstrasse 3, D-3300 Braunschweig, West Germany 

Received 15 September 1986, in final form 15 December 1986 

Abstract. A similarity analysis of the non-linear two-dimensional non-stationary ideal MHD 
equations is presented. In the case of a magnetic field perpendicular to the isentropic 
motion of the plasma, we establish the complete Lie algebra of infinitesimal symmetries. 
The laws of conservation are mentioned. The similarity method for partial differential 
equations as a procedure for reducing the number of independent variables is applied 
repeatedly. Finally we obtain systems of ordinary differential equations for similarity 
solutions of the MHD equations considered. 

1. Introduction 

The one-fluid theory is a well known starting point for studies of the time evolution 
of plasmas from a macroscopic point of view. For long spatial scale and low-frequency 
phenomena in plasmas, a simplified set of the one-fluid equations and Maxwell’s 
equations has been developed, called magnetohydrodynamic ( MHD) equations (Hughes 
and Young 1966). If dissipative effects are neglected, the MHD theory is called ideal. 

In this paper we carry out a similarity analysis of the non-linear two-dimensional 
non-stationary ideal M H D  equations in the case of a magnetic field perpendicular to 
the isentropic motion of the plasma. “The similarity method of the analysis of partial 
differential equations is well described in the literature (Bluman and Cole 1974, 
Ovsiannikov 1982). Therefore, we omit the known details of the procedures. Our 
notation and terminology are similar to that of Bluman and Cole (1974). 

Lie group analysis for non-stationary MHD equations has been used to study 
incompressible fluids (Nucci 1984) and compressible one-dimensional plasmas (GroB 
1983). 

In what follows, we determine the full Lie symmetry group of a system of non- 
stationary two-dimensional M H D  equations for compressible plasmas. Turning to the 
laws of conservation, we mention that, in the case of an adiabatic exponent y = 2 ,  
there are two additional conservation laws. Solutions which are themselves invariant 
under some subgroup of the symmetry group are called similarity solutions. They can 
all be found by solving a system of partial differential equations with only two 
independent (similarity) variables. We discuss some different cases of these reduced 
equations, especially with regard to boundary or initial value problems. In four cases, 

0305-4470/87/ 113135 + 23$02.50 0 1987 IOP Publishing Ltd 3135 



3136 J C Fuchs and E W Richter 

we apply once more the procedure for reduction and obtain systems of ordinary 
differential equations which may be solved numerically by standard procedures. 

2. Lie symmetries of the two-dimensional non-stationary ideal MHD equations 

The system we want to study is the set of non-stationary ideal MHD equations in the 
case of a plane isentropic motion of the plasma across a magnetic field. Let x, y, z be 
Cartesian coordinates and e,, e e the corresponding unit vectors. All variables being 
written as dimensionless quantities, the appropriate equations are Y.' . 

a p + p  E+- + v " - + v Y  ap %Lo at ( a x  "d",') ax ay 

ah ap 
at ax a u x )  ay ax ax p( c+ vx-+  v y  - + RHh -+- = 0 

at 

where U = v"(x ,  y ,  t )ex  + v y ( x ,  y ,  t)e, is the fluid velocity, H = h ( x ,  y,  t)ez is the magnetic 
field, p = p ( x ,  y ,  t )  is the mass density, p = p ( x ,  y,  t )  is the pressure, y is the adiabatic 
exponent and RH = p o H i / p O U :  is the magnetic pressure number (where po is the 
magnetic permeability in free space and H,, po, U, are some reference values of the 
magnetic field, the mass density and the velocity). Equations ( 1 )  are a non-linear 
system of first-order partial differential equations with three independent and five 
dependent variables. 

In the spirit of Lie we consider for x, y,  t, ux,  uy, h, p and p infinitesimal 
transformations of the form 

~ = x + E ~ X ( X , y , f , v X , u ~ , h , p , p ) + O ( & * )  
(analogous transformations for y ,  t )  

(analogous transformations for U", h, p, p )  
6" = v x  + E ~ " ( x ,  y ,  t ,  vx ,  U', h, p, p ) + O ( & ' )  

which leave (1) invariant. 
The determining equations for the infinitesimals t", tY, S', vu=, vu', v h ,  v p  and v p  

are obtained by following the procedure given in Bluman and Cole (1974). This results 
in a linear homogeneous system of partial differential equations for t", TY,  t', vDX, vu', 
vh,  v p  and v p  with 216 equations which can be simplified by linear combinations of 
suitable equations. 

The solution for the determining equations contains nine arbitrary parameters 
C,, . . . , C, in the case of y # 2, whereas for y = 2 there are ten arbitrary parameters 
C, , . . . , C,, and an arbitrary function f ( u ,  w), where U = h / p  and w = p / p 2 .  With 
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(3) 
qc' = c5 - C6UX + ( C ,  - C 8 ) U Y  + C10(y - u Y t )  

q p  = 2( c9+ cs- C7)p - 2 C , , p t  

q h = C 9 h - 2 C 1 0 h t + p f ( ~ ,  W )  

q p  = 2 C9p - 4 C , , p t  - R&f ( U, w). 
The case of y # 2 can be obtained from the case of y = 2 by setting Clo = 0 and f =  0. 

The set of the infinitesimal operators 

with the infinitesimals (3) forms a Lie algebra with the commutator [Z, ,Z,]= 
Z,Z, -ZpZm. In the case of y = 2  an infinite-dimensional Lie algebra is obtained, 
whereas for y # 2 we obtain a nine-dimensional Lie algebra which is a sub-algebra of 
the algebra associated with y = 2 .  A basis of the Lie algebra is obtained by setting 
one of the parameters C,, . . . , Clo in ( 4 )  equal to one, while all other parameters and 
the free function f are equated to zero, or by setting C, = . . . = Clo = 0 and using the 
function f not equal to zero: 

a a  a a  
X I  = a/ax  x2 = a/ay X , = a / a t  X 4 = - + t -  x5 =-+ t -  au"  a x  avy ay 

a a a a  a a a a a  x7= vx-+uy- -2p-+x -+y -  x 6 = ~ ~ - - ~ " - + y - - x -  
au" auY ax ay avx auy ap  ax ay 

x - - u X - - - u ~ - - + 2 p - + t -  

X I o = x t - + y t - +  t 2 - + ( x -  tu") ,+(y - t u y )  - - 2 t t h - - 2 t p - - 4 f p -  

a a a a  a a a 
dux avy a p  at ah  ap ap  
a a a  a a a a a 

ax ay at  a u  auy a h  ap  ap  

X9  = h - +  2 p - +  2 p -  8- 

Here the numbering of the base vectors corresponds to that of the parameters 
C,,  . . . , Clo, and X (  f )  is the vector corresponding to the free function j In the case 
of y # 2 the base vectors are X I ,  . . . , X 9 ,  whereas for y = 2 ,  X , ,  and X ( f )  are added. 
The commutator table of the Lie algebra is given in table 1. 

Since the infinitesimals t", ty, t', vu', v u ' ,  qh, q p  and q P  are known, the associated 
global transformations can be obtained by solving the system of ordinary differential 
equations 

dZ/de = t"(.f, F, ( 3, cy, 6, b, i )  

dC"/ds = q"'(2, f, ( C", Cy, 6, {, 6) 

q & = O ) = X  

(analogous equations for F, 7 )  

(analogous equations for CY,  6, 6, b) .  
( 6 )  

CX(& = 0) = v x  
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In the following, the global one-parameter transformations associated with the base 
vectors X 1 , .  . . , Xlo and X ( f )  of the Lie algebra are given. In doing so, only those 
variables which are changed by the transformation are mentioned: 

c, # 0: (translation in the x direction) 

c2 # 0: j7=y+EC2 (translation in the y direction) 

c3 # 0: i= t+&C3 (time translation) 

c, # 0: x'=x+EC4t v'X=uX+EC4 (Galilei transformation) 

c, # 0: $ = y + E C , t  v ' Y = u Y + E C S  (Galilei transformation) 

c, # 0: 

x' = x +  EC, 

x' = y sin( C6E) + x cos( C&) 

y'= y cos( Cg&) - x  sin( C6&)  
(rotation) 

6" = uY sin( C6E) + u x  cos( C&) 

Cy = U' cos( Cg&) - ux  sin( C6E) 

c, # 0: = x eC7' 6" = eC7' p'=  

e* # 0: 

c g  # 0: 6 = h eC9' p' = p e'C9' p' = p e'c9~ (scaling for h, p, p ) .  

The following transformations are possible in the case of y = 2 only: 

y' = y eCT' v 'Y = eC,' (scaling for x, y ,  u x ,  U-", p )  

(scaling for t ,  v x ,  vY,  p )  

i= t eCaE v'x = u x  e - c , E  - y  - 4' -c8€ = p e2CRE v - U  e 

- X Cl, # 0: X =  v'" = u s  + E C I O ( X  - U?) 
1 - &Clot 

. t .. h 
1 -&Clot 1 +2&C,,t  

t=-- h =  

P P 
p' = 1 +2&C,,t p' = 1 +4ECIOt 

(projective transformation for x, y ,  t, h, p, p ) .  

f( U, w )  # 0: dG/dE = f ( G ,  G) U'( E = 0) = U G = w +iRH(U2- ;*) 
i.e. p'+fRH6' = p +$RHh2.  

3. Conservation laws 

The local equations of balance ( l a ) - ( l e )  are partly themselves conservation laws or 
may be used to establish further conservation laws. For suitably smooth regions and 
fields, a (local) conservation law takes the form 

dT/dt+div(ro+[)=O (7) 
in which 7 denotes a volume density, whereas rtc and 6 denote the convective and 
non-convective fluxes, respectively. 
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The equations ( la ,  d )  are already in the form of a conservation law, with 6 = 0 and 
T = p, respectively. The momentum equations (1 b, c), coupled with ( l a ) ,  yield the laws 
of conservation of linear momentum with T = pv' and 4' = ( p  +tRHh2)ei, i = x, y. If we 
identify T as the energy density f ~ l u ( ~ + p / ( y -  l )+iRHh2,  the law of conservation of 
energy is obtained by virtue of ( la ) - (  e) with 5 = ( p  +fRHh2)u. A coupling of the two 
equations for the conservation of linear momentum leads to the law of conservation 
of angular momentum, with ~=p(xv ' -yu" )  and 5 =  (p+fRHh2)  (xe,-ye,). 

In the case of an adiabatic exponent y = 2, two additional conservation laws are 
produced by the method of applying admitted symmetry group generators to known 
conservation laws (Ibragimov 1985, Olver 1986). According to the discussion of the 
motion of a perfect polytropic gas by Ibragimov (1989, we select the vector field Xlo 
and use the associated vector field 

- t  2p+x-+y-+t* aP aP L-t 4p+x-+y-+t*)d  aP aP ( ax ay a t  ap ax ay a t  ) ap ( 
a h  a h  

Applying x,, to the law of conservation of energy, we obtain a conservation law with 
T =  t ( p I ~ ( ~ + 2 p + R ~ h ~ ) - - p x *  0 and ( = ( p + f R ~ h ~ ) ( 2 t U - X ) ,  where x=xe,+ye,. By 
applying x,, to this conservation law, another conservation law with T =  
t2(plu(2+2p+RHh2) - p x -  (2tu-x) and &=(2p+R,h2)(tU-x)t can be constructed. 

4. Reduction of independent variables 

In order to reduce (1) to a system of partial differential equations with only two 
independent variables, we construct similarity variables and similarity forms of field 
variables. According to the well known method (Bluman and Cole 1974) we have to 
solve the system of characteristic equations 

In general, the infinitesimals are given by (3). If particular boundary or initial 
values are given it is advisable to find out immediately the subgroup of (3) leaving 
these conditions invariant, provided there exists a similarity solution for the particular 
problem. 

In the following we first discuss solutions of (9) with infinitesimals (3) in the case 
of y # 2 (or y = 2 and Clo = 0, f =  0). Subsequently we investigate some boundary or 
initial value problems. 

Integration of the first-order differential equations corresponding to pairs of 
equations involving only independent variables of (9) leads to similarity variables, 
called A and p, which are given as the constants in the solutions. We distinguish two 
cases: 

I: ('#O C3#OorC,#0 

11: ('=O C3 = C8 = 0. 
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In the first case one obtains a non-homogeneous linear system of ordinary differen- 
tial equations with constant coefficients in the case C, = 0. Therefore we distinguish 
the cases C, # 0 (case 11) and C, = 0 (case 12). The non-homogeneous system of 
ordinary differential equations can be easily solved. We find different types of solutions 
corresponding to the cases 

Ila: C6#OorC6=0, c7#0, C7f c, 
Ilb:  c6=o,c7=cg#o 

Ilc: C6=0,  C 7 = 0  

I2a: C6#Oor C,#O 

I2b: C 6 = 0 ,  C7=0 .  

In case 11, corresponding to 6' = 0, we have a similarity variable equal to t and the 

111: ["ZO C,#OorC4#OorC6#OorC7#0  

112: 

For c ~ = ~ ~ = c ~ = ~ ~ = ~ ~ = ~ 6 = c 7 = ~ g = o  we have ["=6'=[ '=0 and it can 
also be shown that q v x  = 7" = v h  = v P  = v P  = 0, i.e. C, = 0. Hence the transformation 
(2) is the identical transformation for both independent and dependent variables. 

In general, the values of the dependent variables ux,  uy, h, p and p change along 
the characteristic curves given by A =constant and p =constant in the space with 
coordinates (x, y ,  1 ) .  Corresponding to the cases distinguished, these variations can 
be found by integrating one of the three systems of characteristic equations 

first pair of equations in (9) leads to the distinction 

6" = 0, [' # 0 C, = C4 = c6 = C, = 0, C, # 0 or C5 # 0. 

dx dux duY dh dp dp 
6" , , ~ ~ - , , u ' - , , h - , , ~  ,,P 

dy dux duY dh dp dp ,, v x  - ,, u y  - ,,h - ,, P - ,,P 
- - 

- 

dt  dux dvY dh dp dp 
51 - , , ~ ~ - , , v ' - , , h - , , p  - ,,p' 

The solutions contain some 'constants' of integration which are functions of A and p. 
These are the new dependent variables, called U(A, p ) ,  V(A, p ) ,  H(A,  p ) ,  R ( h ,  p )  
and P(A,  p ) .  In any case, substitution of the new dependent variables into (1) leads 
to a new system of partial differential equations for these variables with only two 
independent variables, namely A and p. 

We present the results of this procedure in the appendix. It should be mentioned 
that our classification does not correspond with an optimal system of subgroups as 
defined by Ovsiannikov (1982). 

So far no restrictions have been made by using prescribed boundary or initial 
values. Thus let us suppose boundary or initial values b(x, y, t, ux, uy, h, p, p)  = 0 on 
the curves w ( x ,  y ,  t )  = 0.  

In general we cannot use the whole transformation group leaving (1) invariant to 
construct similarity solutions which also satisfy the given boundary or initial values, 
but only a subgroup. 
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In order to find such subgroups it is sufficient to determine transformations which 
not only leave the system of differential equations invariant but which also leave the 
boundary or initial conditions and the curves on which the conditions are prescribed 
invariant. 

In order to determine those transformations which leave the curve w ( x ,  y, t )  = 0 
invariant one has to examine if w ( 2 ,  i, i) = 0 follows whenever w ( x ,  y ,  t )  = 0. This 
yields relations between the constants C, , . . . , C,, and the number of free parameters 
is thus reduced. It also follows that not all of the different cases which have been 
found in order to reduce the system (1) to a system with only two independent variables 
A and p can be used for a special boundary or initial value problem. 

In the following we represent the subgroups which leave given curves w(x ,  y, t )  = 0 
invariant, the cases which can be used to reduce the system (1) to a system with two 
independent variables and the curves W(A, p )  = 0 in the Ap plane on which conditions 
for the reduced system must be prescribed. 

In general, invariance of the given boundary or initial values 
b(x ,  y, t, v x ,  vy ,  h, p ,  p )  = 0 further restricts the transformation groups. 

4.1. Boundary values on lines 

Let boundary values be prescribed on lines y = yo- mx, yo,  m E R, i.e. w ( x ,  y, t )  = 
y -yo+ mx. The transformations which leave these lines invariant must satisfy 

C2 = - C ,  m - C7yo C5 = - C 4 m  C6 = 0. 

Hence only cases Ila,  b, c, I2a, b, I I laP and I I lb  can be used to reduce the system 
(1) to a system with two independent variables. 

The curves W(A, p )  = 0 on which conditions for the reduced system must be 
prescribed are 

Ila:  

I lb:  

Ilc: W ( A , p ) = ~ - y o + m A  

I2a: 

I2b: 

I I laP:  

W(A, p )  = A + mp 

W(A, p )  = p + mA 

W(A, p )  = p + mA 

CL) = p -yo+ mA 

W(A, p )  = p + m 

IIlb:  W(A, p ) = p - y o .  

4.2. Boundary values on lines parallel to the y axis 

Let boundary values be prescribed on lines x = xo ,  x O e  R, i.e. w ( x ,  y, t )  = x - x o .  The 
transformations which leave these lines invariant must satisfy 

c, = - c , x o  C 4 = 0  c, = 0. 

Hence only cases Ia, b, c, I2a, b and I12 can be used to reduce the system (1) to a 
system with two independent variables. 
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The curves W(A, p )  = 0 on which conditions for the reduced system must be 
prescribed are 

Ila:  W A ,  P )  =/I 

I lb:  W O ,  p )  = 

I2a: W A ,  p )  = A 

Ilc: W(A, p ) =  A - X O  

I2b: 
112: W ( h , p ) = A - ~ o .  

W (  A,  /L ) = A - xo 

4.3. Boundary values on circles and ellipses 

Let boundary values be prescribed on ellipses ( x  - xo)2/ a2 + ( y  - yo),/  b2 = 1, a, b, xo, 
y o €  R, i.e. w(x, y ,  r) = ( x  -x0 ) ’ /a2+  ( ~ - y ~ ) ~ / b ’ -  1. The transformations which leave 
these curves invariant must satisfy 

c4= cg= c,=o c, = - G Y O  c2 = C6xO C6=0 or a = b. 

Hence cases Ilc,  12b (circles and ellipses), and Ila,  I2a, I I laa  (circles only) can be 
used to reduce the system (1) to a system with two independent variables. 

The curves W(A, p )  = 0 on which conditions for the reduced system must be 
prescribed are 

Ila:  W(A, p )  = A ,  + p2  - a 2  ( a  = b only) 

Ilc:  ( a  # b possible) 

I2a: W ( A , ~ ) = A ~ + ~ ~ - U ~  ( a  = b only) 

I2b: 

I I laa :  

( a  # b possible) ( A  - xoI2 ( P  - Y o ) ,  - 
W(A, P )  =7+ b2 

W(A, p )  = A -iC6 ln(a2)  ( a  = b only). 

4.4. Boundary and initial values on a circle 

Let boundary values be prescribed at the time t on the circle w(x ,  y ,  t )  = x 2 + y 2 - c 2 t 2 ,  
c E R. The transformations which leave this curve invariant must satisfy 

c, = c,= c,= c4= cg = o  c,= c*. 
For C, = C8 # 0 the case I l a  (C,  # 0) or Ilb (c6 = 0 )  can be used to reduce the system 
(1) to a system with two independent variables. 

The curves W(A, p )  = 0 on which conditions for the reduced system must be 
prescribed are in both cases W (  A, /I) = A + p2 - c2 .  

5. Reduction to ordinary differential equations 

One can look once more for similarity solutions of any of the reduced systems of 
differential equations just obtained. These similarity solutions of the reduced system 
are also similarity solutions of the system ( l ) ,  but in this way it is not necessary for 
all similarity solutions of (1) to be determined. 
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In order to obtain similarity solutions of the reduced system, the similarity variable 
and the new dependent variables which can be used to reduce the system of partial 
differential equations to a system of ordinary differential equations must be calculated. 
These calculations have been applied to the systems of cases Ilc, I2b, I I laP  and IIlb.  

We again look for infinitesimal transformations which leave the given system of 
differential equations invariant. The associated infinitesimals are now tA, tp, q ”, q ”, 
qH, q R  and qp,  depending on A, p, U, V, H, R and P. The new similarity variable is 
called A and the new dependent variables are called %(A), Y(A), %(A), %(A) and 
P(A) .  

5.1. Reduction of the system corresponding to cases I l c  and 12b 

In cases I l c  and 12b the systems of differential equations can be treated together, 
because they only differ in some constants. With the substitution 

K,=(C3C4-C,Ca)IC; K2 = ( c 3 c 5  - c 2  c8)/ c,’ 
K3 = c9/ C8 K4 = 2( C, + C9>/ Ca 

in case Ilc, or 
K,= -Cl/C3 Kz = - C2/ C3 K3 = c9/ c3 K4=2Cg/C3 

in case I2b, both systems can be written as 

aR dR - ( K ,  + U )  +- (K2 + V) + R 
aA 8I.l 

aH aP a U  
a h  ah  a h  8l-L 

av 
ap ap aA aP 

R , H - + - - + R - - ( K , +  u)+RE(K,+ V ) - R U = O  

R , H ~ +  E+ R - ( K ,  + U )  + R + V) - R V  = o 

The determining equations of the infinitesimals can be calculated. To solve these 
equations we make the ansatz that the infinitesimals are fourth degree polynomials in 
A, p, U, V, H, R and P. Hence, in general, the full solution of the determining equations 
is not derived. Instead of the most general transformation group, a subgroup may be 
obtained and the Lie algebra of the infinitesimal operators is a sub-algebra of the most 
general algebra. 

Substituting the ansatz into the determining equations, a system of linear equations 
for the coefficients of the polynomials is obtained. The solution of this system contains 
three free constants cl, c2, e3 E R in the case of y # 2 or K3 # K4 and five free constants cl , .  . . , e5€ R in the case of y = 2  and K3 = K4. 

Finally we get infinitesimals in the two cases 
( a )  y # 2 0 r K 3 # K 4 :  

U tA = e, 5” = e2 q = o  
q V = 0  q H  = e 3 H  q R  = 2 e 3 R  q p  = 2 e , p  ( 1 l a )  
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The group for the case of y # 2  or K 3 #  K4 is a subgroup of the case of y = 2  and 
K 3  = K , ,  which can be obtained by setting e, = e, = 0. 

The set of the infinitesimal operators 

forms a three- or five-dimensional Lie algebra. In the case of y # 2 or K 3  # K4 the Lie 
algebra is generated by 

(13) 
a a a a Z1 = a/aA z2=- Z3= H - + 2 R - + 2 P - .  

8l.L aH aR aP 

In the case of y = 2 and K3 = K4 a basis of the Lie algebra is formed by Zl ,  g2, Z3 and 

a a a a ~ , = - H - + R , H ~ -  ~ , = R - - R ~ H R - .  
aH ap dH aP 

The commutator table for this Lie algebra is given in the following table: 
z1 g2 z3 2, 2, 

2l 0 0 0  0 0  
2 2  0 0 0  0 0  z3 0 0 0  0 2 ,  
2, 0 0 0  0 2 ,  
2, 0 0 -2, -2, 0. 

The global one-parameter transformations associated with these base vectors are 

el # 0: 

e2 # 0: / i = p + E C 2  (translation in the p direction) 

1 = A + &Cl (translation in the A direction) - 
e3 # 0: fi = H e'3~ = R e'i'3~ = p e'',' 

(scaling for H, R, P )  

e4 # 0: fi = H e-'." P =  P-iR,H2(e-2C4E-1 ) 
e, # 0: ~ ~ = H - E E , R  P = P +  E E , R ~ H R  - ; E ~ ~ ' : R ~ R ~ .  

The new similarity variable A and the new dependent variables 42, V, %, 9 and 
9 are obtained as constants by solving the system of differential equations 
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The reduced system of differential equations is 

0 = 9 ( % ' C 2 - ~ ' E l ) + a ' [ C 2 ( % + K l ) - ~ I ( C V I +  K 2 ) ] + 2 ( E 3 / E l ) 9 ( % + K l ) + 9 K 4  

o=  E : , R , X x ' + e 2 9 ' - 9 % ! + 9 % ' [ E ~ ( % + K , ) -  e ; 1 ( z r + K 2 ) ] + ( E 3 / E , ) ( R ~ X ' + 2 9 )  

O = - e , R & ' x ' -  E 1 9 ' - 9 ~ + + 7 [ E * ( % ! + K , ) - E l ( ~ + K 2 ) ]  (17) 

O =  X (  %'E2 - 76,) + x'[ E2(% + K , )  - Cl( 7r+ K J ] +  ( E 3 / e l ) X ( %  + K , )  + X K 3  

O =  yB( %!'e2 - Vel) + 9'[ E,( % + K1) - Cl( Sr+ K2) ]  + 2 (  E 3 / E l ) 9 (  %! + K l ) + 2 ~ 9 K 3  

where the prime denotes derivation with respect to A. 

( b )  E l = O ,  C,#O: 
A = A  P )  = %(A) V(A, p )  = W A )  
H ( A ,  p )  = %(A) e'+/'2 

P ( A ,  p )  = P(A) e2'3"/'2. 

R ( A ,  p )  = %(A)  e2'3"/'2 (18) 

The reduced system of differential equations is 

0 = %%'+2( E 3 / C 2 ) 9 (  Sr+ K 2 )  + 9'( % + K , )  + 9 K 4  

0 = R H X r  + 8' - 9% + 9%l'( % + K1) 

0 = - 9 + 9 Y( % Kl ) ( 231 E,) ( R H z 2  + 2 9) 
0 = X%'+ ( e 3 / E 2 ) X (  Sr+ K , )  + W (  %! + K , )  + X K 3  

0 = y 8 % ' + 2 ( e 3 / e 2 ) 9 (  Sr+ K 2 ) +  8'(% + K , )  +2yBK3. 

5.2. Reduction of the system of case II lb  

In the case under discussion we have calculated the infinitesimals in a way analogous 
to the preceding subsection. The result contains four free constants E,, . . . , R .. 

and some different cases must be distinguished. 

( a )  y f l ,  y f 2 o r  y = 1 ; C l f C 4 0 r C 2 f C 5 :  

The infinitesimals are 

U 
&A = e, + E2p . y = o  7) = o  
77=e2 V H  = O  T R  = O  7) = o  

kA = 6, -I- e2p + e4A 
77"=E2 7" = C4H T R  = 2 E 4 ~  7 ) ' = 2 e 4 p  

P 

( b )  y = l ,  Cl=C4, C,=C5: 

5" = e4+ e4p v U = 0  

( c )  y = 2 :  

= E ,  + E2p 5" = o  ? p = O  
7 7 = E 2  q H  = o  v R  = 2 E 3 ~  

7)' = 2 C 3 P + R H E 3 H 2 .  

(In the case of C2 = 0, C4 = 0 or C, = 0 an additional solution may occur.) 
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Note that in case ( a )  the group of transformations is a subgroup both of the group 
in case ( b )  and of the group in case (c )  which is obtained by setting e, = 0 or C3 = 0. 
The Lie algebras of the associated infinitesimal operators are two or three dimensional, 
respectively, and their base vectors are 

( a )  y # 1 ,  y # 2 0 r y = l ; C , # C 4 0 r  C2ZC5: 

Z1 = a/aA 5i2 = pa/aA +a/a v 
( b )  y = l ,  Cl=C4, Cz=C5: 

2, and g2 as in case ( a ) ,  

a a a a a 
a A  ap aH aR aP g4=A -+ (1 + p )  -+ H-+2R-+2P- 

(c) y = 2 :  
XI and z2 as in case ( a ) ,  

a a 
aR aP 

g3 = 2R-+ (R,H2+ 2P)  -. 

The Lie algebras of cases ( a )  and (c) are commutative Lie algebras; the commutator 
table of case ( b )  is given in the following table: 

2, 2* z4 
21 0 0 2, 
2 2  0 0 z2 
g4 -2, -g2 0. 

The global one-parameter transformations associated with the base vectors are 

e, # 0: 1 = A  +&, (translation in the A direction) 

E2 # 0: 

e3 # 0: = R e2C3~ P =  (P+;R,H~) e 2 ' 3 " - + ~ H ~ 2  

1 = A + E E2p Q = v+ &E2 

6 4  # 0: = eC4' 12 = ( 1 + p ) e c4c - 1 

fi = H e',' 2 = R e2'4~ p = p e2'4~. 

The similarity variable A, the new dependent variables %, Sr, X, 9 and 9 and the 
reduced system of differential equations are as follows. 

( a )  y Z 1 ,  y # 2  or y = l ;  C l # C 4 0 r  C 2 # C , :  

The reduced system of differential equations is 

O =  .5i!'(C4A+ C,)(d;,A+ e1)+.5i![2%C9(c2A+ El)+E2(C4A+ Cl)+ C4(E2A+ e,)] 
0 = % I % (  C4A + c,) + %%c4+ C9R,X2 + 2 c 9 P  

0 = V'( C4A+ C,)( e2A+ E,) + %( CsC1- C262) + VE2( C4A + C,) ( 2 5 )  
O =  %'(C4A+ Cl)(E2A+ ~ l ) + X [ % C 9 ( ~ 2 A + ~ l ) + 6 2 ( C 4 A + C l ) + C 4 ( ~ 2 A + 6 , ) ]  

0 = 8'( C4A + Cl)( E2A + e,) + 8[2%C9( E2A+ e,) + y e 2 (  C4A + C,) + yC4( e 2 A  + el)]. 



3148 J C Fuchs and E W Richter 

( b )  y = 1,  C, = C4, C2 = C5 ( e4 # 0, in the case of e4 = 0 the same solution as in case 
( a )  is obtained): 

The reduced system of differential equations is 

0 = % '( C4A + C,)( E2A + Cl) + % [2C9%( C2A + Cl) - 2 6 3 %  (C5A + C2) 

+ 2e3Sr( C4A + C,) + e2( C4A + C,) + C4( e 2 A  + cl)] 
0 = 9%'( C4A + C,)( e 2 A  + cl) + %%C4( e 2 A  + e,) 

+ 2 9 [  C,( C2A + Cl) - C,( CSA + C,)] 

O =  %V( C4A+ C,) (  E2A+ 2.1) + %VE2( C4A+ C,) + %%( C5C1- C2&) 
(29)  

+29e3(C4A+ C , )  

0 = xl( C4A + C, ) (  e 2 A  + Cl) + XI C9%( &I + 6 )  + e2( C4A + C,)  

+ c4( C2A + e,)] 
0 = 9 '( C4A + C,) ( 62A + Cl) + 9 [ 2 C,  % ( E2A + 61 ) - 2 C, % ( C5 A + C2) 

+ e,) I. + 2 C3 V (  C4A + Cl ) + 2 e2( C4A + C, + 2 C4( 
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5.3. Reduction of the system of case ZZlaP 

The calculations of the infinitesimals, the similarity variable, the new dependent 
variables and the reduced system correspond to the previous cases. Here only the 
results are given. 

The infinitesimals are 

[A = c, 6,ER 5" = o  7 " = 0  

7/"=0 7 = o  

Zl = a/aA. (31) 

(30) 
7f = 0. H 

The Lie algebra of the infinitesimal operators is one dimensional, its base vector being 

The corresponding global one-parameter transformation is a translation in the A 
direction: 

ji = A + E e l .  

A = p  U(A,  = %(A) 

H ( A ,  p )  = %(A) 

The similarity variable and the new dependent variables are 

V(A, p )  = W A )  
(32) 

R(A,  p )  = % ( A >  P(A,  p )  = P(A) .  
The reduced system of differential equations is 

0 = 9'( "Ir - A%) + 9 ( Sr' - A%!') + 9% (2C.J C7 - 1) 

0 = a%'( "Ir - A%) + 9 ("U)' - C: R H  A%%? - C:A8' + C7 CgRHX' + 2 C7C9.9 

O =  B"Ir'(Sr- A%)+ 9%V+ C:R,XX'+ C:8' (33) 
0 = %?( 7'"- A%) + %( sr' - A %') + %?%! ( C9/ C7 + 1) 

0 = 8'( V- A%) + yB( sr' - A%') + 8%(2C9/ C7 + y ) .  

All the systems of ordinary differential equations (17), (19), (25), (27), (29) and 
(33) are non-linear. Therefore a separate qualitative and numerical investigtion is 
needed to analyse the corresponding dynamic systems. This is beyond the scope of 
our present work. 

Finally, as an example we illustrate the return to the original variables for (33) 
only. If a solution %, V, 2, 8 and 8 of (33) is calculated for particular initial 
conditions %(Ao), ?'(Ao), %'(Ao), %!(Ao) and B(A,), the solution of (1) is obtained 
by going back to the original variables with (32) and the corresponding equations for 
case II laP given in the appendix. This leads to the following similarity solution of (1): 

c7x + C4f + c, c4 %(A) -- 
c7 c7 

u"(x, Y ,  t )  = 

c7x + C4f + c, c5 V(A) -- 
c7 c7 

U Y ( x ,  Y,  t )  = 

h ( x , y ,  t)=(C7~+C4f+C1)C9'C7X(A) 

p(x, y,  t )  = ( c 7 x +  c4t + '%(A) 
p(x,y, t ) = ( C 7 ~ + C 4 f + C ~ ) ' ~ 9 ' ~ ~ 8 ( A )  

with 

A = ( C7y + C,t + CZ)/ ( C ~ X  + C4t + Cl) ,  

(34) 
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6. Concluding remarks 

The full Lie symmetry group admitted by the hyperbolic system of partial differential 
equations (1) has been found. As an important subgroup the group of scalings (also 
termed ‘dilatations’ or ‘stretchings’) should be mentioned. In the present case it is at 
most a three-parameter group, given by C, # 0, C8 # 0 and C, # 0 in (3). Solutions 
which are invariant under this subgroup are called self-similar. They include solutions 
which are obtained by dimensional analysis. In many cases self-similar solutions are 
important for describing the asymptotic ( t  + CO) behaviour of non-stationary flows 
(Liberman and Velikovich 1986). 

Due to the special structure of (1) the theory of this system is very similar to that 
of ordinary compressible gas dynamics (Grad 1960). Therefore it is interesting to 
compare the base elements of the two Lie algebras. The calculation of Lie symmetry 
groups of the motion of a perfect polytropic gas in n dimensions by Ibragimov (1985) 
yields a larger group in the case of y = ( n  + 2)/ n than in the case of y # ( n  + 2)/ n. In 
agreement with this result for n = 2, we found that (1) admits a larger group in the 
case of y = 2 than in the case of y # 2. If we compare the two Lie algebras, we find 
that the elements XI up to X ,  of ( 5 )  correspond completely to operators given by 
Ibragimov. On the other hand, X ,  and Xlo are equivalent to operators given by 
Ibragimov only in the case h = O  and an operator such as X ( f )  does not exist there. 

It is interesting to remark that a larger group in the case of y = 2  may occur in 
non-two-dimensional problems. For example, for the one-dimensional non-stationary 
real MHD equations with a density power law fo-r the electrical conductivity, GroB 
(1983) obtained a larger group in the case of y = 2, while according to Ibragimov one 
expects the larger one in the case of y = 3 .  Obviously the terms with electrical 
conductivity change the structure of the system of differential equations, so that the 
formula of Ibragimov is no longer applicable. In particular, the real MHD equations 
are a system of second-order differential equations, whereas the ideal MHD equations 
are a system of first-order differential equations. 
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Appendix 

In what follows we summarise results in terms of the different cases discussed in 0 4. 
The representation is suitable for practical reasons. For all possible values of the 
parameters the corresponding similarity systems can be found in this summary (except 
for C, # 0 only, see 0 4). For any particular case one has to examine which parameters 
are not equal to zero and then look for the corresponding case in the following summary. 
We give some examples to illustrate this procedure. 

Rotation and spatial translations ( C1 # 0, C, # 0, C, # 0 only): case II laa .  
Galilei transformations and time translations ( C3 # 0, C, # 0, C5 # 0 only): case I2b. 
Scalings (only if C, # 0, C, # 0): case II laP 

(only if C, # 0, C, # 0): case I l c  
(only if C, # 0, C, # 0, C, # 0): cases I l a  and Ilb. 



Similarity solutions for ideal MHD equations 3151 

Thus for the last example two cases are left. But only one similarity system exists 
since for C4= C5 = O  in case I l a  C7= Cs is allowed and the systems of I l a  and I lb  
are equivalent. 

Case I: 

Case 11: Cs# 0 

CaseIla:C6#OorC6=0,C7Z0,C7fC, 

C3 f 0 or Cs # 0 
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c7 c6 +- RU+- RV 
c3 c3 

c6 c7 

c3 c3 
--RU+-RV 

Case I2b: c6 = C7 = 0 
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0 = ah a R  (-E+ Cl u )  + aU av c9 (- z+ v )  + R ( ah +--) + m c, 

Case 11: C, = C, = 0 

Case 111: C, f Oor C4# 0 or C,# 0 or C7# 0 

Case IIla: C, # 0 or C7 # 0 
Case II laa:C6#0 

+% l n [ ( x  - ~ ~ ( t ) ) ~ +  ( Y  - Y ~ ( ~ ) ) * I  1 Y - Y o ( t )  
x--Xo(t) 

A = t  p = C7 tan- 

with 
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aH aH au 
ah aP aP 

0 =- ( C S A  + C2) +- U (  C5A + C2) + H- (C5A + Cz) + H( Cy V+ C,) 
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